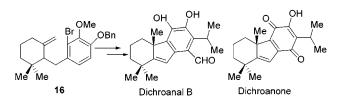
ORGANIC LETTERS 2003 Vol. 5, No. 21 3931–3933


First Total Synthesis of the 4*a*-Methyltetrahydrofluorene Diterpenoids (±)-Dichroanal B and (±)-Dichroanone

Mainak Banerjee, Ranjan Mukhopadhyay, Basudeb Achari, and Asish Kr. Banerjee*

Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700 032, India ashisbanerjee@iicb.res.in

Received August 8, 2003

ABSTRACT

A simple synthesis of the 4*a*-methyltetrahydrofluorene diterpenoids (\pm)-dichroanal B and (\pm)-dichroanone has been achieved through a common hexahydrofluorenone intermediate obtained via Pd(0)-catalyzed reductive cyclization of a substituted 2-(2-bromobenzyl) methylene cyclohexan e.

Recently, three rearranged diterpenoids that possessed the uncommon 4*a*-methyl tetra- (or -hexa)hydrofluorene skeleton were isolated from *Salvia dichroantha*. They were designated dichroanals A (1) and B (2) and dichroanone (3) (Figure 1).¹ Several structurally related diterpenoids have also been isolated that include standishinal (4) from *Thuja standishii*² and taiwaniaquinols A (5) and B (6) from *Taiwania cryptomerioides*.³ Although not much is known about their bioactivities, preliminary studies on 4 indicated its promising tumor-inhibiting potential.^{4,5} No synthesis of this rare group of six-five-six tricyclic ring natural products has appeared so far.

We report herein the first total synthesis of two 4*a*-methyltetrahydrofluorene diterpenoids (\pm)-dichroanal B (2) and (\pm)-dichroanone (3) employing a common hexahydro-

fluorenone intermediate **22**, obtained by a simple and flexible convergent route suitable for the preparation of other members of this family.

There are several methods available for the preparation of 4a-methylhydrofluorene. These include acid-catalyzed cyclization of substituted benzyl cyclohexanols,⁶ inter- and intramolecular (3 + 2) cycloaddition,⁷ and the cyclization

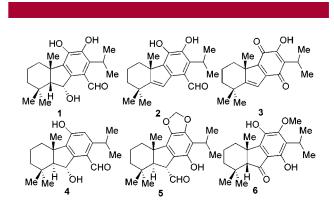
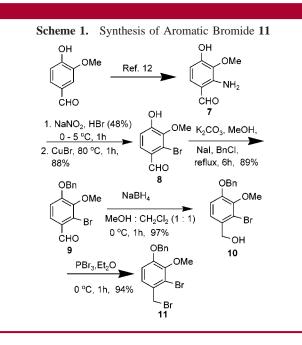


Figure 1. Natural 4a-methylhydrofluorene diterpenoids.

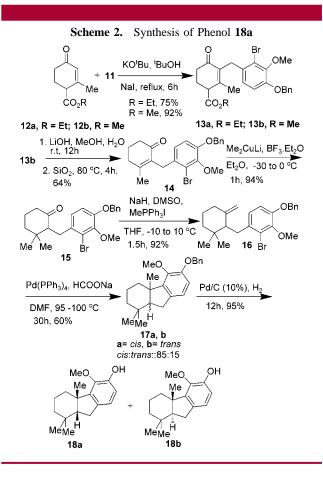
⁽¹⁾ Kawazoe, K.; Yamamoto, M.; Takaishi, Y.; Honda, G.; Fujita, T.; Sezik, E.; Yesilada, E. *Phytochemistry* **1999**, *50*, 493–497.

⁽²⁾ Ohtsu, H.; Iwamoto, M.; Ohishi, H.; Matsunaga, S.; Tanaka, R. *Tetrahedron Lett.* **1999**, 40, 6419–6422.


⁽³⁾ Lin, W.-H.; Fang, J.-M.; Cheng, Y.-S. *Phytochemistry* **1995**, *40*, 871–873.

⁽⁴⁾ Minami, T.; Iwamoto, M.; Ohtsu, H.; Ohishi, H.; Tanaka, R.; Yoshitake, A. *Planta Med.* **2002**, *68*, 742–745.

⁽⁵⁾ Iwamoto, M.; Ohtsu, H.; Tokuda, H.; Nishino, H.; Matsunaga, S.; Tanaka, R. *Bioorg. Med. Chem.* **2001**, *9*, 1911–1921.


of an arylpalladium,⁸ arylradical,⁹ or aryllithium¹⁰ tethered to methylene cyclohexane. Very recently, an efficient method for constituting this skeleton by intramolecular Friedel– Crafts cyclization of 1,3-bis-exocyclic diene has been reported.¹¹ We selected the strategy based on palladiumcatalyzed reductive cyclization⁸ of a substituted 2-(2-bromobenzyl) methylene cyclohexane, which appeared to be the most attractive.

The synthesis began with the preparation of the appropriate benzyl bromide **11** from vanillin using a standard sequence of reactions that proceeded through the known¹² aldehyde **7** (Scheme 1). We sought to prepare the (*o*-bromobenzyl)-

cyclohexanone **15**, a key intermediate for the olefin **16** (Scheme 2), from the cyclohexenone **14** by an established route¹³ involving conjugate addition of a methyl group. While alkylation of Hagemann's ester **12a** gave the alkylated product^{6b,13} **13a** in 75% yield, its attempted hydrolytic decarboxylation under the usual condition^{6b,13} of refluxing with aqueous ethanolic KOH gave a complex mixture of products presumably due to oxidative side reactions involving

- (7) Angle, S. R.; Arnaiz, D. O. J. Org. Chem. 1992, 57, 5937–5947.
 (8) Mukhopadhyaya, J. K.; Pal, S.; Ghatak, U. R. Synth. Commun. 1995, 25, 1641–1657.
- (9) (a) Ishibashi, H.; Kobayashi, T.; Nakashima, S.; Tamura, O. J. Org. Chem. **2000**, 65, 9022–9027. (b) Ishibashi, H.; Kobayashi, T.; Takamasu, D. Synlett **1999**, 1286–1288.
- (10) Bailey, W. F.; Daskapan, T.; Rampalli, S. J. Org. Chem. **2003**, 68, 1334–1338.

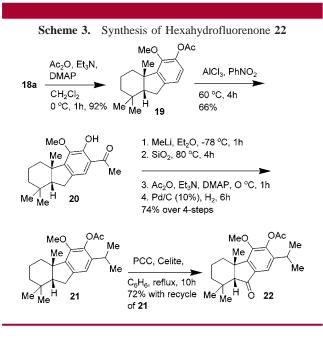
the heavily oxygenated aromatic ring. To our satisfaction, however, the alkylated methyl ester **13b**, obtained in 92% yield from the methyl ester analogue **12b**¹⁴ of Hagemann's ester, underwent smooth hydrolysis with aqueous methanolic LiOH, and the resulting crude acid on heating with a slurry of silica gel in CH₂Cl₂ produced the desired cyclohexenone **14** through decarboxylation. Wittig olefination of **15** proceeded uneventfully, producing the alkene **16** in good overall yield.

Conversion of the bicyclic intermediate to a tricyclic product was next accomplished via Pd(0)-catalyzed cyclization in the presence of a hydride donor.^{8,15} This gave an inseparable mixture of the epimeric hydrofluorenes **17a** and **17b** in a ratio of ca. 85:15 in 60% yield. A separation of the epimers could, however, be realized after deprotection of the *O*-benzyl ether mixture and recrystallization of the resulting product, which afforded the major epimer **18a** (mp 94 °C), assigned cis stereochemistry by analogy.⁸ The minor epimer **18b** could not be isolated in pure form.

With the tricyclic product **18a** in hand as a single epimer, our next task was to introduce an isopropyl group in the aromatic ring and to convert the benzylic methylene group to a ketone. This was best achieved via the sequence of reactions described in Scheme 3. Thus, acetylation of **18a** followed by Fries rearrangement¹⁶ of the acetate **19** furnished

^{(6) (}a) Ghatak, U. R.; Chakravarty, J. *Tetrahedron Lett.* **1966**, *7*, 2449–2458. (b) Ghatak, U. R.; Chakravarty, J.; Banerjee, A. K. *Tetrahedron* **1968**, 24, 1577–1593. (c) Ghatak, U. R.; Chakravarty, J.; Dasgupta, R.; Chakraborti, P. C. *J. Chem. Soc., Perkin Trans. 1* **1975**, 2438–2445. (d) Chakravarty, J.; Dasgupta, R.; Ray, J. K.; Ghatak, U. R. *Proc. Indian Acad. Sci.* **1977**, 86A, 317–325. (e) Chakaborti, P. C.; Ghosh, S.; Kanjilal, P. R.; Satyanarayana, G. O. S. V.; Ghatak, U. R. *Indian J. Chem.* **1979**, *188*, 183–185.

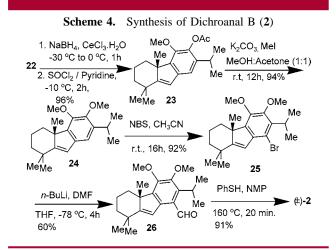
⁽¹¹⁾ Lomberget, T.; Bentz, E.; Bouyssi, D.; Blame, G. Org. Lett. 2003, 5, 2055–2057.


⁽¹²⁾ Burger, A. P. N.; Brandt, E. V.; Roux, D. G. *Phytochemistry* **1983**, 22, 2813–2817.

⁽¹³⁾ Pal, S.; Mukhopadhyaya, J. K.; Ghatak, U. R. J. Org. Chem. 1994, 59, 2687–2694.

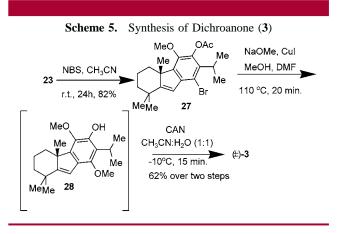
⁽¹⁴⁾ Begbie, A. L.; Golding, B. T. J. Chem. Soc., Perkin Trans. 1 1972, 602–605.

⁽¹⁵⁾ Link, J. T. Org. React. 2002, 60, 157-534.


^{(16) (}a) Gammill, R. B. *Tetrahedron Lett.* **1985**, *26*, 1385–1388. (b) Blatt, A. H. *Org. React.* **1942**, *1*, 342–369.

the 2-acetylphenol **20**. This, after condensation with MeLi, dehydration with silica gel, and acetylation afforded the acetate **21** in good yield after hydrogenation. Benzylic oxidation of **21** with PCC–Celite in benzene at reflux¹⁷ provided the ketone **22** (mp 78 °C).

Following the same sequence of reactions, the epimeric mixture of the cyclized products **17a** and **17b** (ca. 85:15) was conveniently converted to **22** without separation of the epimeric intermediates. The cis ring fusion for **22**, assumed on the basis of analogy,^{6b,18} received support from the NOESY spectrum also. Thus, the singlet for the ring juncture methine proton showed NOESY cross-peaks with two methyl singlets, as reported¹ for dichroanal A.


Finally, the ketone 22 was converted to the desired (\pm) -dichroanal B (2) as follows (Scheme 4). The reduction of

22 under controlled conditions¹⁹ afforded the crude alcohol, which was directly subjected to dehydration with SOCl₂/ pyridine.²⁰ Subsequent hydrolysis of the acetate **23** and methylation of the resulting phenol yielded the tetrahydro-

fluorene 24. Introduction of the aldehyde group in 24 was realized by bromination followed by formylation,²¹ and the resulting dimethyl ether 26 was smoothly converted²² to (\pm) -2. The synthetic product exhibited spectral data identical to those reported¹ for the natural material.

Only three reactions were required to complete the synthesis of (\pm) -dichroanone (3) from the intermediate tetrahydrofluorene acetate 23 (Scheme 5). This product was

smoothly transformed to the bromo derivative **27**, which on heating with NaOMe in MeOH and DMF in the presence of CuI²³ produced the dimethoxy phenol intermediate **28**. On direct oxidation with CAN,²⁴ **28** afforded (\pm)-dichroanone (**3**) in good yield, identified by spectral comparison with the natural product.¹

In conclusion, the first synthesis of the 4*a*-methyltetrahydrofluorene diterpenoids (\pm) -dichronal B and (\pm) -dichroanone has been realized through a simple and convergent route. Extension of this methodology to the other members of the group is in progress.

Acknowledgment. Authors are grateful to Prof. U. R. Ghatak of the Indian Institute of Chemical Biology for his excellent suggestions and criticism and CSIR for the award of Research Fellowship to M.B.

Supporting Information Available: ¹H and ¹³C NMR spectra of compounds **2**, **3**, **16**, **18a**, **21–24**, **26**, and **27**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL035506B

(18) (a) Ghosh, S.; Ghatak, U. R. J. Org. Chem. **1981**, 46, 1486–1490. (b) Parham, W. E.; Czuba, L. J. J. Org. Chem. **1969**, 34, 1899–1904.

(20) Allen, W. S.; Bernstein, S. J. Am. Chem. Soc. 1955, 77, 1028-1032.

(21) Maddaford, S. P.; Charlton, J. L. J. Org. Chem. 1993, 58, 4132–4138.

(22) Nayak, M. K.; Chakraborti, A. K. Tetrahedron Lett. **1997**, 38, 8749–8752.

(23) Sishido, K.; Goto, K.; Miyoshi, S.; Takaishi, Y.; Shibuya, M. J. Org. Chem. **1994**, 59, 406–414.

(24) Horiguchi, Y.; Toeda, A.; Tomoda, K.; Suzuki, H.; Sano, T. Chem. Pharm. Bull. 1998, 46, 1356-1363.

^{(17) (}a) Ghosh, A. K.; Mukhopadhyay, C.; Ghatak, U. R. J. Chem. Soc., Perkin Trans. 1 **1994**, 327–332. (b) Rathore, R.; Saxena, N.; Chandrasekaran, S. Synth. Commun. **1986**, 16, 1493–1498.

^{(19) (}a) Luche, J.-L. J. Am. Chem. Soc. **1978**, 100, 2226–2227. (b) Boutin, R. H.; Rapoport, H. J. Org. Chem, **1986**, 51, 5320–5327.